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Synopsis: 
 

Driven by the need for more accurate decoding of perceptual experiences from brain 

recordings, this study addresses the limitations imposed by traditional one-

dimensional analysis of fMRI data. Our goal was to maintain the spatial information of 

fMRI data by employing a two-dimensional cortical surface-based analytical 

framework, aiming to enhance fMRI representation of neural responses. After 

converting volumetric fMRI scans into 2D surface data, we use Vision Transformers 

and Latent Diffusion Models to learn from fMRI and generate precise image. Our 

model achieved better representation abilities and generated clearer, more accurate 

high-resolution natural images from 2D fMRI inputs. 

 

 



Impact:  
 

 By preserving spatial information in fMRI analysis and self-supervised learning stage, 

this study not only establishes innovative methods for fMRI representation learning 

and perception reconstruction but also paves the way for sophisticated multimodal 

brain models in the future.  

 
  



Introduction: 
 

Decoding and reconstructing perceptual experiences from brain recordings has 

gathered lots of attention these two years, driven by significant advances in 

neuroimaging data and machine learning techniques1,2. Functional Magnetic 

Resonance Imaging (fMRI), with its ability to capture brain activity patterns with high 

spatial resolution, presents a rich modality for such explorations. Traditional methods 

have treated this volumetric data by vectorize it into a one-dimensional format, which 

leads to losing important spatial information in neural activation. Recognizing the 

brain's inherent multi-dimensional structure, this study seeks to retain the spatial 

integrity of the fMRI data by utilizing a two-dimensional cortical surface-based 

framework during the decoding process. By doing so, we aim to enhance the fidelity 

of reconstructed perceptual experiences, while also enriching our understanding of the 

brain's representational mechanisms. 

 

Methods: 
 

In our study, we adopted a novel approach to preserve the spatial structure inherent 

in fMRI data by transforming 3D volumetric scans into 2D representations via a 

projection method aligned with the fsaverage brain template, as shown in Figure 2A. 

This conversion was crucial to maintaining the brain's spatial hierarchies and allowed 

us to use advanced image processing techniques tailored for 2D data. Following this 

projection, Figure 2B demonstrates that the 2D fMRI data were systematically divided 

into discrete patches, which were then tokenized into large embeddings to facilitate 

the subsequent neural network training. 

 

Capitalizing on the strengths of Vision Transformer (ViT) architectures, we designed 

a self-supervised learning regimen where a ViT-based autoencoder was tasked with 

reconstructing randomly masked segments of the fMRI data3, 4. This training was 

pivotal in enabling the model to learn and interpret the latent structures within the fMRI 

data, which is essential for accurate image reconstruction. Especially when the paired 

data is limited. With this self-supervised learning scheme, the model can be trained in 

a large fMRI-only dataset first and then tuned in the downstream target dataset. Later 

on, we bridged the representation gap between the fMRI embeddings and the needs 



of a Latent Diffusion Model (LDM)5 with a latent dimension projector as shown in 

Figure 2C, ensuring that the fMRI-derived information could be effectively utilized for 

image generation. 

 

Our methodology involved an extensive pre-training phase using the expansive 

Human Connectome Project dataset6 to establish a broad understanding of brain 

activity patterns. Further refinement was achieved through finetuning on the Natural 

Scenes Dataset7, 8, which paired fMRI data with corresponding images to increase the 

model's reconstruction accuracy. The final stage of our research involved a rigorous 

evaluation of the model's performance, focusing on its capacity to generate 

perceptually coherent images from new fMRI data, with success measured against 

various quantitative metrics. 

 

 

Results: 
The empirical outcomes of this study were twofold. Initially, during the fMRI 

representation learning phase, our model demonstrated an enhanced ability to capture 

and reconstruct the structural complexities of fMRI data. Notably, as visualized in our 

results (Figure 3), the correlation coefficients between the reconstructed and the 

original fMRI data were significantly higher compared to previous one-dimensional 

approaches1, with Pearson Correlation Coefficient (PCC) of 0.92 vs. 0.62. This 

suggests a superior retention of spatial information, which is integral for accurate brain 

decoding. Secondly, as shown in Figure 4A, when tasked with generating high-

resolution images from the 2D fMRI input, the model yielded outputs with exceptional 

clarity and detail. The quantitative metrics (shown in Figure 4B) used for evaluating 

image quality indicated the efficacy of our method in terms of semantic understanding 

and pixel-level similarity. 

 

Discussion: 
The use of a two-dimensional approach in processing and interpreting fMRI data has 

proven to be more than a mere technical preference; it aligns closely with the inherent 

structure and functional organization of the brain. This study extends its inquiry into 

higher-dimensional spaces, enriching the generalizability and interpretability of the 

derived neural representations. The marked improvements in our results underscore 



the importance of respecting the brain's spatial hierarchies in computational modelling. 

This not only paves the way for more accurate reconstructions of visual stimuli but 

also suggests potential for a deeper, more nuanced understanding of the neural 

substrates of perception. Consequently, our findings show the importance of retaining 

structural information in the design of neural decoding algorithms, which could be 

pivotal in advancing both theoretical and applied neuroscience. 

 

Conclusion: 
We propose to preserve spatial information of neural responses by co-operating higher 

dimensional analysis. Our methodology not only sets a new standard for image 

reconstruction from brain activity but also pave the way for future applications in video 

and audio reconstruction, disease prediction, and brain-behavior analyses. It lays the 

groundwork for more sophisticated brain foundation models with significant clinical and 

research implications. 

 

Reference: 
1. Chen, Z., Qing, J., Xiang, T., Yue, W. L., & Zhou, J. H. (2023). Seeing beyond 

the brain: Conditional diffusion model with sparse masked modeling for vision 

decoding. In Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition (pp. 22710-22720).  

2. Takagi, Y., & Nishimoto, S. (2023). High-resolution image reconstruction with 

latent diffusion models from human brain activity. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 

14453-14463). 

3. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin 

transformer: Hierarchical vision transformer using shifted windows. 

In Proceedings of the IEEE/CVF international conference on computer 

vision (pp. 10012-10022). 

4. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked 

autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition (pp. 16000-16009). 

5. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-

resolution image synthesis with latent diffusion models. In Proceedings of the 



IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-

10695). 

6. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., 

Ugurbil, K., & Wu-Minn HCP Consortium. (2013). The WU-Minn human 

connectome project: an overview. Neuroimage, 80, 62-79. 

7. Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Prince, J. S., Dowdle, L. T., ... 

& Kay, K. (2022). A massive 7T fMRI dataset to bridge cognitive neuroscience 

and artificial intelligence. Nature neuroscience, 25(1), 116-126. 

8. Lane, C. (2023). NSD-Flat: Pre-processed brain activity flat maps from the 

Natural Scenes Dataset. Retrieved from 

https://huggingface.co/datasets/clane9/NSD-Flat.   



Figure 1. Study Overview. 

 

 
 

Figure 2. Model Pipeline for Visual Reconstruction from Brain Activity. 
Panel A illustrates the transformation of brain volume data into a 2D cortical 

representation, maintaining the neural structure and spatial dynamics. Panel B 

describes our masked brain modelling approach, using a self-taught Vision 

Transformer autoencoder to interpret the concealed segments of 2D fMRI data. In 

Panel C, a Latent Diffusion Model translates neural patterns into detailed visual stimuli. 
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Figure 3: Visualization of Masked fMRI Reconstruction. This figure demonstrates 

our model's capability to accurately reconstruct masked segments of fMRI data. In the 

pre-training phase utilizing the Human Connectome Project dataset, the model 

achieved a Pearson Correlation Coefficient (PCC) of 0.82 and 0.87 for Natural Scenes 

Dataset. 
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Figure 4. Efficacy of Latent Diffusion Model in Image Reconstruction from fMRI 
Data. The figure presents the ability of our latent diffusion model in generating high-

fidelity natural images from fMRI data, showcasing both quantitative accuracy and 

visual congruence. 
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